Forms of Soil Water
Water which comes to the soil and is absorbed exists in the soil principally in two forms: Free water and capillary water.
FREE WATER
Free water is that form of water which fills our wells, is found in the bottoms of holes dug in the ground during wet seasons and is often found standing on the surface of the soil after heavy or long continued rains. It is sometimes called ground water or standing water and flows under the influence of gravity.
Is free water good for the roots of farm plants? If we remember how the root takes its food and moisture, namely through the delicate root hairs; and also remember the experiment which showed us that roots need air, we can readily see that free water would give the root hairs enough moisture, but it would at the same time drown them by cutting off the air. Therefore free water is not directly useful to the roots of house plants or farm plants, excepting such as are naturally swamp plants, like rice, which grows part of the time with its roots covered with free water.
FIG. 26.-CAPILLARY TUBES.
To show how water rises in small tubes or is drawn into small spaces.ToList
FIG. 27.-CAPILLARY PLATES
Water is drawn to the highest point where the glass plates are closest together.ToList
FIG. 28.
A cone of soil to show capillarity. Water poured about the base of this cone of soil has been drawn by capillary force half-way to the top.ToList
FIG. 29.
To show the relative amounts of film-moisture held by coarse and fine soils. The colored water in bottle A represents the amount of water required to cover the half pound of pebbles in the tumbler B with a film of moisture. The colored water in bottle C shows the amount required to cover the soil grains in the half pound of sand in tumbler D.ToList
CAPILLARY WATER
If you will take a number of glass tubes of different sizes, the largest not more than one-fourth of an inch in diameter, and hold them with one end of each in water or some colored liquid, you will notice that the water rises in the tubes (Fig. 26), and that it rises highest in the smallest tube. The force which causes the water to rise in these tubes is called the capillary force, from the old Latin word capillum (a hair), because it is most marked in hair-like tubes, the smaller the tube the higher the water will rise. The water which rises in the tubes is called capillary water.
Another method of illustrating capillary water is to tie or hold together two flat pieces of glass, keeping two of the edges close together and separating the opposite two about one-eighth of an inch with a sliver of wood. Then set them in a plate of water or colored liquid and notice how the water rises between the pieces of glass, rising higher the smaller the space (Fig. 27). It is the capillary force which causes water to rise in a piece of cloth or paper dipped in water.
Take a plate and pour onto it a cone-shaped pile of dry sand or fine soil; then pour water around the base of the pile and note how the water is drawn up into the soil by capillary force (Fig. 28).
Capillary water is the other important form of water in the soil. This is moisture which is drawn by capillary force or soaks into the spaces between the soil particles and covers each particle with a thin film of moisture.
FILM WATER
Take a marble or a pebble, dip it into water and notice the thin layer or film of water that clings to it. This is a form of capillary water and is sometimes called film water or film moisture. Take a handful of soil that is moist but not wet, notice that it does not wet the hand, and yet there is moisture all through it; each particle is covered with a very thin film of water.
Now this film water is just the form of water that can supply the very slender root hairs without drowning them, that is, without keeping the air from them. And the plant grower should see to it that the roots of his plants are well supplied with film water and are not drowned by the presence of free water. Capillary water may sometimes completely fill the spaces between the soil particles; when this occurs the roots are drowned just as in the case of free water as we saw when cuttings were placed in the puddled clay (see Fig. 18). Free water is indirectly of use to the plant because it serves as a supply for capillary and film moisture.
Now I think we can answer the question which was asked when we were studying the habit of growth of roots but was left unanswered at the time (see page 14). The question was this: Of what value is it to the farmer to know that roots enter the soil to a depth of three to six feet? We know that roots will not grow without air. We also know that if the soil is full of free water there is no air in it, and, therefore, roots of most plants will not grow in it. It is, therefore, of interest to the farmer to see that free water does not come within at least three or four feet of the surface of the soil so that the roots of his crops may have plenty of well ventilated soil in which to develop. If there is a tendency for free water to fill the soil a large part of the time, the farmer can get rid of it by draining the land. We get here a lesson for the grower of house plants also. It is that we must be careful that the soil in the pots or boxes in which our plants are growing is always supplied with film water and not wet and soggy with free water. Water should not be left standing long in the saucer under the pot of a growing plant. It is best to water the pot from the top and let the surplus water drain into the saucer and then empty it out.
Which soils have the greatest capacity for film water?
Experiment.-Place in a tumbler or bottle one-half pound of pebbles about the size of a pea or bean; pour a few drops of water on them and shake them; continue adding water and shaking them till every pebble is covered with a film of water; let any surplus water drain off. Then weigh again; the difference in the two weights will be approximately the weight of the film water that the pebbles can carry. Repeat this with sand and compare the two amounts of water. A striking illustration can be made by taking two slender bottles and placing in them amounts of colored water equal to the amounts of film water held by the pebbles and sand respectively. In the accompanying illustration (Fig. 29), A represents the amount of water that was found necessary to cover the pebbles in tumbler B with a film of moisture. C is the amount that was necessary to cover with a film the particles of sand in D. The finer soil has the greater area for film moisture. It has been estimated that the particles of a cubic foot of clay loam have a possible aggregate film surface of three-fourths of an acre.
* * *