Chapter 2 EARLY HINDU FORMS WITH NO PLACE VALUE

While it is generally conceded that the scientific development of astronomy among the Hindus towards the beginning of the Christian era rested upon Greek[42] or Chinese[43] sources, yet their ancient literature testifies to a high state of civilization, and to a considerable advance in sciences, in philosophy, and along literary lines, long before the golden age of Greece. From the earliest times even up to the present day the Hindu has been wont to put his thought into rhythmic form.

The first of this poetry-it well deserves this name, being also worthy from a metaphysical point of view[44]-consists of the Vedas, hymns of praise and poems of worship, collected during the Vedic period which dates from approximately 2000 B.C. to 1400 B.C.[45] Following this work, or possibly contemporary with it, is the Brahmanic literature, which is partly ritualistic (the Brāhma?as), and partly philosophical (the Upanishads). Our especial interest is in the Sūtras, versified abridgments of the ritual and of ceremonial rules, which contain considerable geometric material used in connection with altar construction, and also numerous examples of rational numbers the sum of whose squares is also a square, i.e. "Pythagorean numbers," although this was long before Pythagoras lived. Whitney[46] places the whole of the Veda literature, including the Vedas, the Brāhma?as, and the Sūtras, between 1500 B.C. and 800 B.C., thus agreeing with Bürk[47] who holds that the knowledge of the Pythagorean theorem revealed in the Sūtras goes back to the eighth century B.C.

The importance of the Sūtras as showing an independent origin of Hindu geometry, contrary to the opinion long held by Cantor[48] of a Greek origin, has been repeatedly emphasized in recent literature,[49] especially since the appearance of the important work of Von Schroeder.[50] Further fundamental mathematical notions such as the conception of irrationals and the use of gnomons, as well as the philosophical doctrine of the transmigration of souls,-all of these having long been attributed to the Greeks,-are shown in these works to be native to India. Although this discussion does not bear directly upon the origin of our numerals, yet it is highly pertinent as showing the aptitude of the Hindu for mathematical and mental work, a fact further attested by the independent development of the drama and of epic and lyric poetry.

It should be stated definitely at the outset, however, that we are not at all sure that the most ancient forms of the numerals commonly known as Arabic had their origin in India. As will presently be seen, their forms may have been suggested by those used in Egypt, or in Eastern Persia, or in China, or on the plains of Mesopotamia. We are quite in the dark as to these early steps; but as to their development in India, the approximate period of the rise of their essential feature of place value, their introduction into the Arab civilization, and their spread to the West, we have more or less definite information. When, therefore, we consider the rise of the numerals in the land of the Sindhu,[51] it must be understood that it is only the large movement that is meant, and that there must further be considered the numerous possible sources outside of India itself and long anterior to the first prominent appearance of the number symbols.

No one attempts to examine any detail in the history of ancient India without being struck with the great dearth of reliable material.[52] So little sympathy have the people with any save those of their own caste that a general literature is wholly lacking, and it is only in the observations of strangers that any all-round view of scientific progress is to be found. There is evidence that primary schools existed in earliest times, and of the seventy-two recognized sciences writing and arithmetic were the most prized.[53] In the Vedic period, say from 2000 to 1400 B.C., there was the same attention to astronomy that was found in the earlier civilizations of Babylon, China, and Egypt, a fact attested by the Vedas themselves.[54] Such advance in science presupposes a fair knowledge of calculation, but of the manner of calculating we are quite ignorant and probably always shall be. One of the Buddhist sacred books, the Lalitavistara, relates that when the Bōdhisattva[55] was of age to marry, the father of Gopa, his intended bride, demanded an examination of the five hundred suitors, the subjects including arithmetic, writing, the lute, and archery. Having vanquished his rivals in all else, he is matched against Arjuna the great arithmetician and is asked to express numbers greater than 100 kotis.[56] In reply he gave a scheme of number names as high as 1053, adding that he could proceed as far as 10421,[57] all of which suggests the system of Archimedes and the unsettled question of the indebtedness of the West to the East in the realm of ancient mathematics.[58] Sir Edwin Arnold, in The Light of Asia, does not mention this part of the contest, but he speaks of Buddha's training at the hands of the learned Vi?vamitra:

"And Viswamitra said, 'It is enough,

Let us to numbers. After me repeat

Your numeration till we reach the lakh,[59]

One, two, three, four, to ten, and then by tens

To hundreds, thousands.' After him the child

Named digits, decads, centuries, nor paused,

The round lakh reached, but softly murmured on,

Then comes the kōti, nahut, ninnahut,

Khamba, viskhamba, abab, attata,

To kumuds, gundhikas, and utpalas,

By pundarīkas into padumas,

Which last is how you count the utmost grains

Of Hastagiri ground to finest dust;[60]

But beyond that a numeration is,

The Kātha, used to count the stars of night,

The Kōti-Kātha, for the ocean drops;

Ingga, the calculus of circulars;

Sarvanikchepa, by the which you deal

With all the sands of Gunga, till we come

To Antah-Kalpas, where the unit is

The sands of the ten crore Gungas. If one seeks

More comprehensive scale, th' arithmic mounts

By the Asankya, which is the tale

Of all the drops that in ten thousand years

Would fall on all the worlds by daily rain;

Thence unto Maha Kalpas, by the which

The gods compute their future and their past.'"

Thereupon Vi?vamitra ācārya[61] expresses his approval of the task, and asks to hear the "measure of the line" as far as yōjana, the longest measure bearing name. This given, Buddha adds:

... "'And master! if it please,

I shall recite how many sun-motes lie

From end to end within a yōjana.'

Thereat, with instant skill, the little prince

Pronounced the total of the atoms true.

But Viswamitra heard it on his face

Prostrate before the boy; 'For thou,' he cried,

'Art Teacher of thy teachers-thou, not I,

Art Gūrū.'"

It is needless to say that this is far from being history. And yet it puts in charming rhythm only what the ancient Lalitavistara relates of the number-series of the Buddha's time. While it extends beyond all reason, nevertheless it reveals a condition that would have been impossible unless arithmetic had attained a considerable degree of advancement.

To this pre-Christian period belong also the Vedā?gas, or "limbs for supporting the Veda," part of that great branch of Hindu literature known as Sm?iti (recollection), that which was to be handed down by tradition. Of these the sixth is known as Jyoti?a (astronomy), a short treatise of only thirty-six verses, written not earlier than 300 B.C., and affording us some knowledge of the extent of number work in that period.[62] The Hindus also speak of eighteen ancient Siddhāntas or astronomical works, which, though mostly lost, confirm this evidence.[63]

As to authentic histories, however, there exist in India none relating to the period before the Mohammedan era (622 A.D.). About all that we know of the earlier civilization is what we glean from the two great epics, the Mahābhārata[64] and the Rāmāyana, from coins, and from a few inscriptions.[65]

It is with this unsatisfactory material, then, that we have to deal in searching for the early history of the Hindu-Arabic numerals, and the fact that many unsolved problems exist and will continue to exist is no longer strange when we consider the conditions. It is rather surprising that so much has been discovered within a century, than that we are so uncertain as to origins and dates and the early spread of the system. The probability being that writing was not introduced into India before the close of the fourth century B.C., and literature existing only in spoken form prior to that period,[66] the number work was doubtless that of all primitive peoples, palpable, merely a matter of placing sticks or cowries or pebbles on the ground, of marking a sand-covered board, or of cutting notches or tying cords as is still done in parts of Southern India to-day.[67]

The early Hindu numerals[68] may be classified into three great groups, (1) the Kharo??hī, (2) the Brāhmī, and (3) the word and letter forms; and these will be considered in order.

The Kharo??hī numerals are found in inscriptions formerly known as Bactrian, Indo-Bactrian, and Aryan, and appearing in ancient Gandhāra, now eastern Afghanistan and northern Punjab. The alphabet of the language is found in inscriptions dating from the fourth century B.C. to the third century A.D., and from the fact that the words are written from right to left it is assumed to be of Semitic origin. No numerals, however, have been found in the earliest of these inscriptions, number-names probably having been written out in words as was the custom with many ancient peoples. Not until the time of the powerful King A?oka, in the third century B.C., do numerals appear in any inscriptions thus far discovered; and then only in the primitive form of marks, quite as they would be found in Egypt, Greece, Rome, or in various other parts of the world. These A?oka[69] inscriptions, some thirty in all, are found in widely separated parts of India, often on columns, and are in the various vernaculars that were familiar to the people. Two are in the Kharo??hī characters, and the rest in some form of Brāhmī. In the Kharo??hī inscriptions only four numerals have been found, and these are merely vertical marks for one, two, four, and five, thus:

In the so-called ?aka inscriptions, possibly of the first century B.C., more numerals are found, and in more highly developed form, the right-to-left system appearing, together with evidences of three different scales of counting,-four, ten, and twenty. The numerals of this period are as follows:

There are several noteworthy points to be observed in studying this system. In the first place, it is probably not as early as that shown in the Nānā Ghāt forms hereafter given, although the inscriptions themselves at Nānā Ghāt are later than those of the A?oka period. The four is to this system what the X was to the Roman, probably a canceling of three marks as a workman does to-day for five, or a laying of one stick across three others. The ten has never been satisfactorily explained. It is similar to the A of the Kharo??hī alphabet, but we have no knowledge as to why it was chosen. The twenty is evidently a ligature of two tens, and this in turn suggested a kind of radix, so that ninety was probably written in a way reminding one of the quatre-vingt-dix of the French. The hundred is unexplained, although it resembles the letter ta or tra of the Brāhmī alphabet with 1 before (to the right of) it. The two hundred is only a variant of the symbol for hundred, with two vertical marks.[70]

This system has many points of similarity with the Nabatean numerals[71] in use in the first centuries of the Christian era. The cross is here used for four, and the Kharo??hī form is employed for twenty. In addition to this there is a trace of an analogous use of a scale of twenty. While the symbol for 100 is quite different, the method of forming the other hundreds is the same. The correspondence seems to be too marked to be wholly accidental.

It is not in the Kharo??hī numerals, therefore, that we can hope to find the origin of those used by us, and we turn to the second of the Indian types, the Brāhmī characters. The alphabet attributed to Brahmā is the oldest of the several known in India, and was used from the earliest historic times. There are various theories of its origin, none of which has as yet any wide acceptance,[72] although the problem offers hope of solution in due time. The numerals are not as old as the alphabet, or at least they have not as yet been found in inscriptions earlier than those in which the edicts of A?oka appear, some of these having been incised in Brāhmī as well as Kharo??hī. As already stated, the older writers probably wrote the numbers in words, as seems to have been the case in the earliest Pali writings of Ceylon.[73]

The following numerals are, as far as known, the only ones to appear in the A?oka edicts:[74]

These fragments from the third century B.C., crude and unsatisfactory as they are, are the undoubted early forms from which our present system developed. They next appear in the second century B.C. in some inscriptions in the cave on the top of the Nānā Ghāt hill, about seventy-five miles from Poona in central India. These inscriptions may be memorials of the early Andhra dynasty of southern India, but their chief interest lies in the numerals which they contain.

The cave was made as a resting-place for travelers ascending the hill, which lies on the road from Kalyāna to Junar. It seems to have been cut out by a descendant of King ?ātavāhana,[75] for inside the wall opposite the entrance are representations of the members of his family, much defaced, but with the names still legible. It would seem that the excavation was made by order of a king named Vedisiri, and "the inscription contains a list of gifts made on the occasion of the performance of several yagnas or religious sacrifices," and numerals are to be seen in no less than thirty places.[76]

There is considerable dispute as to what numerals are really found in these inscriptions, owing to the difficulty of deciphering them; but the following, which have been copied from a rubbing, are probably number forms:[77]

The inscription itself, so important as containing the earliest considerable Hindu numeral system connected with our own, is of sufficient interest to warrant reproducing part of it in facsimile, as is done on page 24.

The next very noteworthy evidence of the numerals, and this quite complete as will be seen, is found in certain other cave inscriptions dating back to the first or second century A.D. In these, the Nasik[78] cave inscriptions, the forms are as follows:

From this time on, until the decimal system finally adopted the first nine characters and replaced the rest of the Brāhmī notation by adding the zero, the progress of these forms is well marked. It is therefore well to present synoptically the best-known specimens that have come down to us, and this is done in the table on page 25.[79]

Table showing the Progress of Number Forms in India

Numerals

A?oka[80]

?aka[81]

A?oka[82]

Nāgarī[83]

Nasik[84]

K?atrapa[85]

Ku?ana[86]

Gupta[87]

Valhabī[88]

Nepal[89]

Kali?ga[90]

Vākā?aka[91]

[Most of these numerals are given by Bühler, loc. cit., Tafel IX.]

With respect to these numerals it should first be noted that no zero appears in the table, and as a matter of fact none existed in any of the cases cited. It was therefore impossible to have any place value, and the numbers like twenty, thirty, and other multiples of ten, one hundred, and so on, required separate symbols except where they were written out in words. The ancient Hindus had no less than twenty of these symbols,[92] a number that was afterward greatly increased. The following are examples of their method of indicating certain numbers between one hundred and one thousand:

[93] for 174

[94] for 191

[95] for 269

[96] for 252

[97] for 400

[98] for 356

To these may be added the following numerals below one hundred, similar to those in the table:

[99] for 90

[100] for 70

We have thus far spoken of the Kharo??hī and Brāhmī numerals, and it remains to mention the third type, the word and letter forms. These are, however, so closely connected with the perfecting of the system by the invention of the zero that they are more appropriately considered in the next chapter, particularly as they have little relation to the problem of the origin of the forms known as the Arabic.

Having now examined types of the early forms it is appropriate to turn our attention to the question of their origin. As to the first three there is no question. The or is simply one stroke, or one stick laid down by the computer. The or represents two strokes or two sticks, and so for the and . From some primitive came the two of Egypt, of Rome, of early Greece, and of various other civilizations. It appears in the three Egyptian numeral systems in the following forms:

Hieroglyphic

Hieratic

Demotic

The last of these is merely a cursive form as in the Arabic , which becomes our 2 if tipped through a right angle. From some primitive came the Chinese symbol, which is practically identical with the symbols found commonly in India from 150 B.C. to 700 A.D. In the cursive form it becomes , and this was frequently used for two in Germany until the 18th century. It finally went into the modern form 2, and the in the same way became our 3.

There is, however, considerable ground for interesting speculation with respect to these first three numerals. The earliest Hindu forms were perpendicular. In the Nānā Ghāt inscriptions they are vertical. But long before either the A?oka or the Nānā Ghāt inscriptions the Chinese were using the horizontal forms for the first three numerals, but a vertical arrangement for four.[101] Now where did China get these forms? Surely not from India, for she had them, as her monuments and literature[102] show, long before the Hindus knew them. The tradition is that China brought her civilization around the north of Tibet, from Mongolia, the primitive habitat being Mesopotamia, or possibly the oases of Turkestan. Now what numerals did Mesopotamia use? The Babylonian system, simple in its general principles but very complicated in many of its details, is now well known.[103] In particular, one, two, and three were represented by vertical arrow-heads. Why, then, did the Chinese write theirs horizontally? The problem now takes a new interest when we find that these Babylonian forms were not the primitive ones of this region, but that the early Sumerian forms were horizontal.[104]

What interpretation shall be given to these facts? Shall we say that it was mere accident that one people wrote "one" vertically and that another wrote it horizontally? This may be the case; but it may also be the case that the tribal migrations that ended in the Mongol invasion of China started from the Euphrates while yet the Sumerian civilization was prominent, or from some common source in Turkestan, and that they carried to the East the primitive numerals of their ancient home, the first three, these being all that the people as a whole knew or needed. It is equally possible that these three horizontal forms represent primitive stick-laying, the most natural position of a stick placed in front of a calculator being the horizontal one. When, however, the cuneiform writing developed more fully, the vertical form may have been proved the easier to make, so that by the time the migrations to the West began these were in use, and from them came the upright forms of Egypt, Greece, Rome, and other Mediterranean lands, and those of A?oka's time in India. After A?oka, and perhaps among the merchants of earlier centuries, the horizontal forms may have come down into India from China, thus giving those of the Nānā Ghāt cave and of later inscriptions. This is in the realm of speculation, but it is not improbable that further epigraphical studies may confirm the hypothesis.

As to the numerals above three there have been very many conjectures. The figure one of the Demotic looks like the one of the Sanskrit, the two (reversed) like that of the Arabic, the four has some resemblance to that in the Nasik caves, the five (reversed) to that on the K?atrapa coins, the nine to that of the Ku?ana inscriptions, and other points of similarity have been imagined. Some have traced resemblance between the Hieratic five and seven and those of the Indian inscriptions. There have not, therefore, been wanting those who asserted an Egyptian origin for these numerals.[105] There has already been mentioned the fact that the Kharo??hī numerals were formerly known as Bactrian, Indo-Bactrian, and Aryan. Cunningham[106] was the first to suggest that these numerals were derived from the alphabet of the Bactrian civilization of Eastern Persia, perhaps a thousand years before our era, and in this he was supported by the scholarly work of Sir E. Clive Bayley,[107] who in turn was followed by Canon Taylor.[108] The resemblance has not proved convincing, however, and Bayley's drawings have been criticized as being affected by his theory. The following is part of the hypothesis:[109]

Numeral Hindu Bactrian Sanskrit

4 = ch chatur, Lat. quattuor

5 = p pancha, Gk. π?ντε

6 = s ?a?

7 = ? sapta

(the s and ? are interchanged as occasionally in N. W. India)

Bühler[110] rejects this hypothesis, stating that in four cases (four, six, seven, and ten) the facts are absolutely against it.

While the relation to ancient Bactrian forms has been generally doubted, it is agreed that most of the numerals resemble Brāhmī letters, and we would naturally expect them to be initials.[111] But, knowing the ancient pronunciation of most of the number names,[112] we find this not to be the case. We next fall back upon the hypothesis that they represent the order of letters[113] in the ancient alphabet. From what we know of this order, however, there seems also no basis for this assumption. We have, therefore, to confess that we are not certain that the numerals were alphabetic at all, and if they were alphabetic we have no evidence at present as to the basis of selection. The later forms may possibly have been alphabetical expressions of certain syllables called ak?aras, which possessed in Sanskrit fixed numerical values,[114] but this is equally uncertain with the rest. Bayley also thought[115] that some of the forms were Ph?nician, as notably the use of a circle for twenty, but the resemblance is in general too remote to be convincing.

There is also some slight possibility that Chinese influence is to be seen in certain of the early forms of Hindu numerals.[116]

More absurd is the hypothesis of a Greek origin, supposedly supported by derivation of the current symbols from the first nine letters of the Greek alphabet.[117] This difficult feat is accomplished by twisting some of the letters, cutting off, adding on, and effecting other changes to make the letters fit the theory. This peculiar theory was first set up by Dasypodius[118] (Conrad Rauhfuss), and was later elaborated by Huet.[119]

A bizarre derivation based upon early Arabic (c. 1040 A.D.) sources is given by Kircher in his work[120] on number mysticism. He quotes from Abenragel,[121] giving the Arabic and a Latin translation[122] and stating that the ordinary Arabic forms are derived from sectors of a circle, .

Out of all these conflicting theories, and from all the resemblances seen or imagined between the numerals of the West and those of the East, what conclusions are we prepared to draw as the evidence now stands? Probably none that is satisfactory. Indeed, upon the evidence at hand we might properly feel that everything points to the numerals as being substantially indigenous to India. And why should this not be the case? If the king Srong-tsan-Gampo (639 A.D.), the founder of Lhāsa,[123] could have set about to devise a new alphabet for Tibet, and if the Siamese, and the Singhalese, and the Burmese, and other peoples in the East, could have created alphabets of their own, why should not the numerals also have been fashioned by some temple school, or some king, or some merchant guild? By way of illustration, there are shown in the table on page 36 certain systems of the East, and while a few resemblances are evident, it is also evident that the creators of each system endeavored to find original forms that should not be found in other systems. This, then, would seem to be a fair interpretation of the evidence. A human mind cannot readily create simple forms that are absolutely new; what it fashions will naturally resemble what other minds have fashioned, or what it has known through hearsay or through sight. A circle is one of the world's common stock of figures, and that it should mean twenty in Ph?nicia and in India is hardly more surprising than that it signified ten at one time in Babylon.[124] It is therefore quite probable that an extraneous origin cannot be found for the very sufficient reason that none exists.

Of absolute nonsense about the origin of the symbols which we use much has been written. Conjectures, however, without any historical evidence for support, have no place in a serious discussion of the gradual evolution of the present numeral forms.[125]

Table of Certain Eastern Systems

Siam

Burma[126]

Malabar[127]

Tibet[128]

Ceylon[129]

Malayalam[129]

We may summarize this chapter by saying that no one knows what suggested certain of the early numeral forms used in India. The origin of some is evident, but the origin of others will probably never be known. There is no reason why they should not have been invented by some priest or teacher or guild, by the order of some king, or as part of the mysticism of some temple. Whatever the origin, they were no better than scores of other ancient systems and no better than the present Chinese system when written without the zero, and there would never have been any chance of their triumphal progress westward had it not been for this relatively late symbol. There could hardly be demanded a stronger proof of the Hindu origin of the character for zero than this, and to it further reference will be made in Chapter IV.

* * *

            
            

COPYRIGHT(©) 2022