Chapter 8 CLOUD-FORMATION-EVAPORATION.

Water exists in different forms without, however, undergoing any chemical change. It is when condensed into the fluid state that we call it "water," and then it is heavier than the atmospheric air and therefore seeks the low places upon the earth's surface, the lowest of which is the bed of the ocean. Wherever there is water or moisture on the face of the globe there is a process going on at the surface called evaporation. This process is much more rapid under the action of heat than when it is colder.

In other words, as the heat increases evaporation increases within certain limits and bears some sort of a ratio to it. Evaporation is not confined to water, but as our subject has to deal with atmospheric phenomena we will speak of it only in its relation to aqueous moisture.

The heat that is imparted to the earth's surface by the rays of the sun is able to separate water into minute particles, which, when so separated, form what is called vapor, which is transparent, as well as much lighter than the air at the surface of the earth. Being lighter than the air, it rises when disengaged and floats to the upper regions of the atmosphere. The atmosphere will contain a certain amount of these transparent globules of moisture in the spaces between its own molecules. If the air is warm the molecules will be farther apart and it will contain more moisture than when it is cold.

The process of evaporation is one of the most important in the catalogue of nature's dynamics. Without it there would be no verdure on the hills, no trees on the plains, no fields of waving grain, and no animal life upon the land surface of the globe. Evaporation is nature's method of irrigation, and the system is inaugurated on a grand scale, so that there are but few neglected spots upon the face of the earth which moisture, carried up from the great reservoirs of water, does not reach. The rate of evaporation, other things being equal, depends upon the extent of surface; therefore a smooth surface like that of the lake or ocean will not send up as much vapor from a given area in square miles as an equal area of land will do, when it is saturated with moisture, for the reason that there is a much larger evaporating surface on a square mile of land, owing to its inequalities, than upon an equal area of smooth water. Of course, if the earth is dry there can be but little evaporation. One of the effects of evaporation is to withdraw heat, and so to produce cold in the substance from which the evaporation takes place.

If we put water into a vial and drop regularly upon it some fluid that evaporates readily it will extract the heat from the vial and the water in it to such an extent that in a short time the water will be frozen. In hot countries ice is manufactured on a large scale upon the principle that we have just described. Water is put into shallow basins, excavated in the earth, over which is placed some substance like straw that readily radiates heat, and on the straw are placed porous bricks, that are kept wet, thus furnishing a very large evaporating surface. In this way the process of evaporation is carried on very rapidly and the heat is extracted from the water to such an extent that it freezes, often forming ice in one night over an inch in thickness, and this in the hottest climates on the globe. Evaporation cannot go on in places where the air is already saturated with moisture. When the air is dry evaporation is very rapid, but as it becomes more and more filled with moisture the evaporation is checked to the same degree. This fact accounts for the difference of bodily comfort that we experience at different times in the year when the temperature is the same. Sometimes we are very uncomfortable although the temperature is not above 75 degrees Fahrenheit, more so even than we are at other times when the temperature is ten or fifteen degrees higher. If the air is saturated with moisture, even though the temperature is not above 70 or 75 degrees, the perspiration is not readily evaporated from the surface of the body. If the air is dry the temperature may be much higher and we be much more comfortable, because evaporation goes on rapidly, which keeps the body not only dry, but cool. I remember passing through a desert in Arizona where there was scarcely a green thing in sight in any direction, and the temperature was said to be 140 degrees. I did not suffer as much as I often have done in the East with the thermometer at 80 or 90 degrees, and there was very little show of sensible perspiration; it was going on rapidly, however, but was being absorbed by the dry air. This goes to show that temperature is not the only factor to be considered when we are making an estimate of the good or bad qualities of a climate.

Evaporation is carried on much more rapidly when the wind blows than at other times, for the reason that the moisture is carried off laterally as fast as it is formed, all resistance to its escape into the upper air being removed. If the air is charged to saturation with moisture at a certain temperature, it will remain so, and evaporation stops so long as the temperature remains unchanged. If its temperature rises the process of evaporation can start up, because the capacity of the air for holding moisture has been increased. But if a temperature is perceptibly lowered another phenomenon will manifest itself.

In the uncondensed state vaporized moisture is quite transparent, so that we are able to see through it as we do through a pane of glass. If, however, the body of air that is saturated with this invisible moisture becomes suddenly chilled, the moisture condenses into cloud or mist.

If we watch a passing railroad train we shall notice a mass of fleecy white mist floating away from the smokestack, assuming the billowy forms of some of the clouds in summer. This cloud is produced by the sudden condensation of steam, which was transparent before it came in contact with the cold, outside air, the effect being much more pronounced in cold than in warm weather. We may liken these floating globules of mist to the dust of the earth which floats in the air, and it has not been inaptly called water-dust. Anyone who has seen an atomizer used or has stood at the foot of a great waterfall, like Niagara, has seen the fluid so finely divided that it will float in the air, instead of falling to the ground. What takes place is that a number of these transparent atoms of moisture that are released in the process of evaporation coalesce into one small drop or particle of water, and they will continue to float in the air as mist or cloud until a sufficient number have combined into one solid mass to render that mass heavier than the air, when it falls in the form of rain.

If we live in a region-and there are such on the face of the earth-where there is very little evaporation and consequently very little moisture in the air, there is rarely ever a cloud seen nor is there any rainfall, for the reason that there is no material existing out of which to form clouds, and the clouds precede the rain. Hence, all the artificial attempts to produce rain in these arid regions have been futile. If a body of warm air, when saturated with invisible moisture, is suddenly chilled by coming in contact with a cold wave, it is squeezed like a sponge, so to speak, and the invisible particles become visible because a number of them have coalesced as one particle; the particles gather in a large mass, and we have the phenomenon of cloud formation.

Clouds more generally form in the upper regions of the atmosphere because it is normally colder in the higher regions. In some cases clouds float very high in the air and in others very low. This is due to two causes:

If we should send up a balloon containing air rarefied to a certain extent it would continue to ascend only until it reached a point where the outside air and that contained in the balloon are of the same density. If we should send up this same balloon on different days with the same rarefaction of internal air we should find that on some days it would float higher than others, because the density of the air is constantly fluctuating, as is indicated by the rise and fall of the barometer. Now let us consider the balloon as a globule of moisture of a definite weight, and this globule only one of an aggregation of globules sufficient to form a cloud. We can readily see from what has gone before that a cloud thus formed, having a definite density and weight, would float higher some days than others.

Assuming again that the density of the air remains the same from day to day, the clouds will still float high or low in the atmosphere from another cause. Let us go back to our illustration of the balloon. If we have a fixed condition of atmosphere, external to the balloon, and vary the conditions internally, which means varying its weight, the balloon will float higher or lower as the internal conditions are varied. Now apply this principle to the moisture globules of which a cloud is formed and we can understand why a cloud will float high or low from the two causes that we have described. Clouds are of different color and density, and this is due to the differences of the make-up of the moisture globules of which the clouds are formed. If these globules are in an advanced stage of condensation the cloud is darker and more opaque. In earlier conditions of condensation the cloud will have a bright look, which shows that it reflects most of the light, whereas in the case of the dark cloud the light is largely absorbed.

There is a sort of notion prevailing that clouds come up from the horizon, and in many cases they do, but they may form directly over our heads. There always has to be a beginning, and that occurs wherever the conditions are most favorable for condensation of vapor. If the earth is wet and the sun is hot the evaporation may be very rapid as well as the ascent of the invisible moisture, which carries with it the air, which in turn expands the higher it rises, thus producing cold. This, taken with the normal cold that exists in the higher regions, may be sufficient to produce a sudden condensation of this ascending vapor, which is all that is necessary to form a cloud.

The inquiry may arise, Why is the moisture condensed, almost always, in the upper regions of the air, where it is rare? Because the more rare and therefore expanded it is, the more moisture it will hold. This, taken with the fact that cold currents are encountered high up, sufficiently answers the question.

It is interesting to know that the processes of nature are interdependent. It is not enough that we have the evaporation of moisture that will ascend into the higher regions of the air and there be condensed into cloud and possibly rain, but we must have the means for distributing these conditions over a large area, and for this purpose we have the phenomenon of wind. Why the winds blow can be accounted for to a certain extent,-we might say to a large extent,-but there yet remain many unsolved problems relating to wind and weather. Of the phenomena of wind we will speak more fully in a future chapter.

* * *

            
            

COPYRIGHT(©) 2022